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Long-Time Translational and Rotational 
Brownian Motion in Two Dimensions 
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The long-time translational and rotational motion ofa Brownian particle in two 
dimensions is studied on the basis of the fluctuation-dissipation theorem and 
linearized hydrodynamics. The long-time motion Ibllows from the low frequency 
behavior of the mobility matrix. The coefficient of the long-time tail for the 
translational motion turns out to be independent of shape and size of the body, 
in agreement with mode-coupling theory. For rotational Brownian motion the 
coefficient of the long-time tail is found to depend on the shape of the body. 
Tiffs result is in conflict with a recent prediction from mode-coupling theory, 
and indicates that the mode-coupling calculation should be revised. 
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1. I N T R O D U C T I O N  

The long-time tail of  the translational velocity autocorrelation function was 
first discovered for a tagged particle in a hard sphere fluid in a computer 
simulation by Alder and WainwrightJ I~ The long-time behavior was under- 
stood on the basis of  an extension of  kinetic theory ~21 and of  mode-coupling 
theory. ~3~ It was soon realized that for a Brownian particle the same 
behavior follows from the fluctuation-dissipation theorem and linearized 
hydrodynamics.14 s~ On this basis we have shown 19~ that the coefficient of  
the long-time tail does not depend on shape or size of  the Brownian particle, 
in agreement with mode-coupling theory. Experimental evidence I'~ ,3~ and 
computer simulations I t4.,5~ are in accord with the theoretical predictions. 
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The situation is less simple for the long-time tail in rotational Brownian 
motion. Ladd 1~5~ has calculated the angular velocity correlation function 
for a sphere in computer simulation and found good agreement with the 
theoretical prediction from mode-coupling theory and from the fluctuation- 
dissipation theorem. Masters and Keyes 1161 and Garisto and Kapral ~171 
argued on the basis of mode-coupling theory that the coefficient of the 
long-time tail does not depend on the shape of the particle. A hydro- 
dynamic argument by Hocquart and Hinch IjS~ for a centrally symmetric 
body showed that the coefficient does depend on shape. We have provided 
a rigorous proof, tl91 based on linear hydrodynamics and the fluctuation- 
dissipation theorem, that for an arbitrary rigid body the coefficient of the 
long-time tail depends on shape. The coefficient we found reduces to that 
of Hocquart and Hinch for a centrally symmetric particle. A recent com- 
puter simulation for a finite cylinder immersed in a lattice Boltzmann 
fluid ~2~ shows good agreement with the theoretical prediction for an 
ellipsoid of approximately the same shape, t2~ 

The computer simulation was also performed for a rectangle immersed 
in a two-dimensional lattice Boltzmann fluid, t2~ In the following we 
calculate the coefficient of the long-time tail of the angular velocity correla- 
tion function from the fluctuation-dissipation theorem and two-dimen- 
sional hydrodynamics. We find that the coefficient depends on shape in a 
manner similar to that in three dimensions. This is in conflict with the 
prediction of Lowe e t  al. ~2~ based on mode-coupling theory. These authors 
found a coefficient that does not depend on shape. We calculate the coef- 
ficient explicitly for an ellipse and find good agreement with the computer 
simulation result for a rectangle if the axes of the ellipse are taken equal to 
the sides of the rectangle. 

No doubt for a sufficiently large Brownian particle the fluctuation- 
dissipation theorem and linearized hydrodynamics can be trusted to yield 
the correct result. The disagreement with mode-coupling theory in both 
two and three dimensions indicates that the mode-coupling calculation 
should be revised. 

2. EQUATIONS OF MOTION 

We consider a solid cylinder of infinite length, immersed in a viscous 
incompressible fluid of shear viscosity t/ and mass density p. The fluid 
extends to infinity and obeys stick boundary conditions at the surface of 
the cylinder. The z axis of the Cartesian coordinate system is taken along 
the axis of the cylinder. The cross section of the cylinder in the xy plane 
is simply connected, but otherwise arbitrary. We denote the cross-sectional 
area of the cylinder at rest by Vo and its circumference by So. We consider 
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only motions transverse to the axis and fluid flow independent of the z 
coordinate. Thus we deal with a two-dimensional flow problem. 

For small-amplitude motion the flow velocity v(r, t) and pressure 
p(r, t) are governed by the linearized Navier-Stokes equations 

9u 
p -~- = r /V2v-  Vp, V - v = O  (2.1) 

The pressure field p is determined from the condition of incompressibility. 
The rigid body motion is described by the velocity field 

w ( r , t ) = U ( t ) + ~ ( t ) x r ,  r ~ V  o (2.2) 

Here and in the following all vectors have only x and y components, except 
for the angular velocity f~(t) and the torque, which are directed along the 
z axis. We choose the origin at the center of mass of the cross section. The 
stick boundary condition requires 

v(s, t) = w(s, t), s~So (2.3) 

On account of our assumption of small amplitude motion the boundary 
condition may be applied at the undisplaced surface. 

Fourier analyzing in time we find from Eq. (2.1) that the fluid equa- 
tions of motion for the Fourier components with time factor exp(-iogt) are 

-iogpv,,,=ti VRv,,,- Vp,o, V.v, , ,=0 (2.4) 

It is convenient to read this as an equation in two dimensions. The equation 
holds everywhere in the whole outer space i f=  R z -  Vo. It is convenient to 
extend the equations to be valid in the whole space R 2, with the boundary 
condition accounted for by a force density F,,,(r) acting on the imagined 
fluid for r e V0. This gives rise to the inhomogeneous equations (2z23~ 

r/[ VRv,,, -a2v,o ] - V p , , , =  - F,o(r), V- v,,, = 0 (2.5) 

where oL=(-iogp/~) ~/2 with Re 0~>0. The induced force density F,,,(r) is 
made unique by the requirement that for r e  Vo the flow velocity and 
pressure are given by (22'24) 

v,,,(r) = w,,,(r), p,,,(r) = -qo~2U,,, �9 r, r ~ Vo (2.6) 

Then 

F,,,(r) = f,,,(s) 6(r - s )  + t/~2(~,,, x r) O0(r) (2.7) 
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where f,,,(s) is the surface force density, and Oo(r) is the characteristic func- 
tion for the cross section Vo. The surface force density follows from the 
requirement that the flow (v,o, p,,,) in the outer space V be identical with 
that of the original problem. 

The solution of Eq. (2.5) reads in integral form 

v,,,(r) = vo,,,(r) + ~ G(r - r'; co). F,,,(r') dr' (2.8) 

I f Q ( r  r' p,,,(r)=po,,(r)+~-~n - ).F,,,(r )dr '  (2.9) 

where (Vo,,,, Po,,,) represents an incident flow in the absence of the cylinder, 
restricted by the conditions that Vo,,,: = 0, and that Vo,,, and Po,,, depend 
only on the x, y coordinates. The incident flow (Vo,,,, Po,,,) satisfies the 
homogeneous equations (2.4) everywhere in space. The Green function is 
given explicitly by ~251 

1 
G(r; co)=~-~ { 1G(r; co)+ ~-2 VV[Go(r )_  G(r; co)]} 

G(r; o9) = Ko(~r), G0(r) = - I n  r 
(2.10) 

where Ko(~r ) is a modified Bessel function/261 Note that Eq. (A.3) of ref. 25 
has a sign error. The Green function for the pressure is 

r 
Q ( r ) =  , -  -VGo(r )  (2.11) 

F-  

The peculiarity of hydrodynamics in two dimensions becomes 
apparent if we consider the low-frequency expansion of the Green function. 
The first few terms of the expansion are 

G(r, og)=G~l~(r)lnct+G"~l(r)+G~t~(r)~21no~+O(ofl) (2.12) 

where the first coefficient function is given by 

- 1  Glib(r) = (2.13) 
4m/ 

and the second by 

G l ~  q - l l n r + ~ +  l n 2 - y -  1 (2.14) 
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where ~ is Euler's constant. The third coefficient function in Eq. (2d2) is 

1 
G(t)(r) = ,--;---- [ -3r21 +2r r ]  

~zzE~ 
(2.15) 

The first term in Eq. (2.12) shows that the Green function diverges in the 
zero-frequency limit. The corresponding flow pattern is spatially uniform. 
The second term in Eq. (2.12) differs from the steady-state Green function 
proposed by Oseen ~27) by a constant multiplying the unit tensor. Such a term 
corresponds to a solution of the homogeneous steady-state equations. (28) 

3. L O W - F R E Q U E N C Y  M O B I L I T Y  M A T R I X  

The low-frequency behavior of the Green function, shown in Eq. (2.12), 
leads to corresponding behavior of the mobility matrix and the friction 
matrix. The low-frequency behavior of the mobility matrix is closely related 
to the long-time motion of the cylinder after an initial translational or rota- 
tional impulse, and to the long-time behavior of the velocity autocorrelation 
function in the case of Brownian motion. 

The 3 x 3 mobility matrix la(Og) is defined from the relations 

u,, ,  = . " (~o)  �9 o%, + . '"(co) J,,, 

o , , ,  = . " ' ( c o )  �9 o~,.  + / ~ " ( c o )  ~, ,  
(3.1) 

where o~,,, is the two-dimensional force exerted on the fluid, 

- f  F,,,dr (3.2) 

and ~-[,, is the z component of the torque, 

~-[,, = f [r  x F,,,].,. dr (3.3) 

It follows from a generalization of Lorentz' reciprocity theorem (29-3~) that 
the mobility matrix is symmetric. Hence its inverse, the 3 x 3 friction matrix 
~(co) defined by 

~t(o)) ~(o~) = I (3.4) 

is also symmetric. 
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The first few terms in the low-frequency expansion of the mobility 
matrix can be found from a study of Eq. (2.8). We consider a situation 
where the force and torque exerted on the fluid take fixed values 

F,,,(r) dr, r• (3.5) 

with ~101 a vector in the xy plane, and ~--(o) directed along the z axis. The 
cylinder is freely moving with translational velocity U,o and rotational 
velocity ~,,,. The incident flow (%,,, Po,,) is identically zero. We write 
Eq. (2.8) in the abbreviated form 

v,,, = G(co) F,,, (3.6) 

The stick boundary condition implies 

w,,,ls,,= [ G(co) F,,,]so (3.7) 

Corresponding to the expansion in Eq. (2.12), we write the first few terms 
of the expansion of the solid-body motion w,,,(r) as 

w,,,=w(I)lno(+wI~ (3.8) 

and of the force density F,,,(r) as 

F,,, = F I~ + F(t)0~ -' In 0~ + F~2b~ 2 + O(0f. 4 In ~) (3.9) 

Substituting in Eq. (3.7) and comparing terms, we find from the terms 
proportional to In 0~ 

wet) Iso = [ GCt)F~ (3.10) 

From Eqs. (2.2) and (2.13) we find 

1 
U(/)= _ _ _  ~ o ) ,  ~lt) = 0  (3.11) 

4n~/ 

This shows that the lowest order term of the mobility matrix is universal 
and independent of shape or size of the cylinder. 

From the terms of order unity in Eq. (3.7) we find 

w(~ [so = [ G(~176 (3.12) 

This corresponds to a solution of the steady-state Stokes problem for 
prescribed force #-(o~ and torque ~-~o)exerted on the fluid. Since Eq. (2.14) 
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provides a well-defined Green function, the solution of the problem is 
unique. The solution yields a definite translational velocity U ~~ rotational 
velocity g~o~, flow pattern (V ~ p~0~), and induced force density F~~ 
Since U ~~ and gV ~ are linear in ~ o ~  and ~--~01, we can read off the corre- 
sponding term #o~ in the expansion of the mobility matrix. 

It follows from Eq. (3.11) that the lowest order contribution to the 
translational mobility matrix is given by 

1 
la"(o~) = - 1 ln0c+ O(1) (3.13) 

4nr/ 

independent of shape or size of the body. The remaining elements la'~(m), 
!1"'(o9), and /.dr(co) are of order unity at low frequency. Hence the tensor 
g"(og) and the vectors ~'"(m) and ~"'(o9) vanish as I/In ~ as co~  0. The 
rotational element pr"(co) behaves at low frequency as 

/f"(co) = p"'(0) +pr" ')a= In 0c+ O(a 2) (3.14) 

The first term is the steady-state rotational mobility. We evaluate the coef- 
ficient p"~ ~ I in the next section. The form of the translational mobility matrix 
shown in Eq. (3.13) leads to universal long-time behavior of the transla- 
tional velocity autocorrelation function. The coefficient p"t ~ I depends on the 
shape of the body. As a consequence the coefficient of the long-time tail of 
the rotational velocity autocorrelation function is not universal. 

4. R O T A T I O N A L  MOBIL ITY  

In this section we show that the coefficient p"'l~) in Eq. (3.14) can be 
expressed in terms of elements of the steady-state grand mobility matrix. 
From the terms of order 0c 2 In 0c in Eq. (3.7) we find 

wl l I I s~, = [ G I/)F(2~ + G t~ 21- G (I ~F ~~ ] s,, (4.1) 

The first term on the right vanishes on account of Eq. (2.13) and the fact 
that ~ ~  as follows from Eq. (3.5). The remaining terms in Eq. (4.1) 
can be related to the solution of a steady-state Stokes problem. To this 
order we need only the rotational-rotational part pr"(o~) of the mobility 
matrix, so that we can put ~ ~  It follows from Eq. (2.15) that the 
kernel GI l~(r -  r') equals 

1 
G'l l ( r - - r ' )  = - 7  --- [--3(r2 + r '2--2r ,  r ') 1 +2( r - -  r ' ) ( r - - r ' ) ]  (4.2) 

J z ~  
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For ~ ( o ) =  0 the terms with r21 and rr can be omitted from this expression. 
The remaining terms in the velocity field G(~)F ")) are constant or linear in 
r. Hence this velocity field satisfies the homogeneous Stokes equations with 
zero pressure. We recall that the first term on the right in Eq. (4.1) is zero. 
For  ~,~"))= 0 the remaining terms can be taken to be the limiting values at 
the circumference So of a steady-state Stokes velocity field v~)(r) that 
satisfies the equation 

v(~ = G~~ (I) + G~I)F (~ (4.3) 

with the conditions ~ ( ~ ) =  0, .~-(~)= 0. As remarked following Eq. (4.2), for 
~ q o ) =  0 the flow field 

v~j I ~(r) = f GC I)(r - r ' ) .  F(~ ' ) dr' (4.4) 

satisfies the homogeneous Stokes equations at zero pressure, and is a 
superposition of a uniform and a linear flow 

V(o I, ~ l )=~( , )  (4.5) 
" O U  ~ " O L  

The uniform flow is 

v(1) - l f (w-- 32m/ [ --3r'- ' l  + 2 r ' r ' ]  �9 F(~ ') dr '  (4.6) 

This corresponds to a translational velocity IT (~)-"  (~) and a vanishing ~ O U  - -  Y O U  

contribution to the force density F(~)(r). The linear flow is 

1 
v;,i'(r) = 1 - ~ / f  [ ( 3 r . r ' ) 1 - r r ' - r ' r ]  -F '~  ' (4.7) 

This can be expressed as 

v~k)(r) -- ~L X r + gL" r (4.8) 

with rotational velocity ~L  = g2L e: given by 

1 ~-(o~ 
( 2 L = ~  (4.9) 
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and traceless symmetric tensor gL given by 

1 ~o~ (4.10) gc = ~-~q 

where F"~ is the traceless symmetric force dipole moment 

F" '~=�89 [ r F ~ ~ 1 7 6  c~ 1] dr (4.11) 

From Eq. (4.3) one finds for the resulting rotational velocity 

g-2* t ) = ~QL -t- II"d(0) : gL (4.12) 

where the tensor g"a(O) is part of the steady-state grand mobility matrix. .32~ 
The symmetric force dipole moment is related to the torque .y-r = yC0~e_ 
by 

~,o,= _W+,.(0)..~-,o, (4.13) 

From Eqs. (4.9)-(4.13) we therefore find for the contribution of order 
~2 In ~ to the rotational mobility 

1 
/.t'"" ~ ' = [1 - la"a(0) : pa"(0)] (4.14) 

8m/ 

This relation is similar to a corresponding result in three dimensions, t~9~ 
The coefficient depends on the shape of the body. From symmetry it 
follows that the scalar product in Eq. (4.14) is negative. For a circular 
cylinder the product vanishes. 

5. L O N G - T I M E  T A I L S  

The low-frequency results embodied by Eqs. (3.13) and (3.14) can be 
used to derive the long-time tails of translational and rotational motion. 
We consider first deterministic motion in the absence of stochastic forces 
and torques. Thus we assume that the body is accelerated from rest by a 
sudden translational and rotational impulse. The applied force and torque 
per unit length of cylinder are given by 

E(t)=Sr6(t), N(t)=SRe:O(t) (5.1) 
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where the vector Sr  has vanishing z component. The subsequent motion of 
the body follows from 

with the 3 • 3 admittance matrix ~(o9) given by 

~,_/(w) = [ -- iogm + 4(09)] - '  (5.3) 

The 3 x 3 effective mass matrix m follows from the behavior at high fre- 
quency. For the low-frequency behavior under consideration the effective 
mass matrix is not relevant. From Eq. (3.13) we find at low frequency 

In 
U,,, = 8rc2q S t +  O(1) (5.4) 

This corresponds to a slow long-time decay c33) 

U ( t ) , ~ l  St ,  as t ~ o o  (5.5) 
~zcr/t 

independent of shape and size of the body. 
Similarly we find from Eq. (3.14) at low frequency 

12,,, = 2~ [p,-,-c0) + p,.,.c I 1~2 In ~] SR + O(~ 2) (5.6) 

This corresponds to the long-time decay t33) 

t'2,,,~,u'c~)+SR, as t ~  oo (5.7) 

In discussing Brownian motion we take a strictly two-dimensional 
point of view, corresponding to computer simulations. (ta'z~ Thus the 
mean-square translational velocity in a thermal equilibrium ensemble is 

( U  2) = ksT (5.8) 
mp 

where the angle brackets indicate an equilibrium average in the ther- 
modynamic limit, and mp is the mass of the two-dimensional body. The 
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translational velocity autocorrelation function characterizing the Brownian 
motion is defined as 

C uu(t) = (U(t )  U(0)) (5.9) 

More generally one considers the 3 x 3 time-correlation matrix 

C(t)=(Cuu(t)  Cua(t)~ 
\CQu(t) C~(t)/ (5.10) 

This has the one-sided Fourier transform 

f: C(~o) = e"'C(t) dt (5.11) 

According to the fluctuation-dissipation theorem, c6'34"35~ it is given by 

C(o)) = kB TO#(o)) (5.12) 

From Eqs. (3.13) and (5.3) we therefore find for the long-time behavior of 
the translational velocity autocorrelation function 

Cvv(t).,  kaT  8nr/t I as t --* oo (5.13) 

independent of shape, size, or mass of the body. This result agrees with the 
prediction of mode-coupling theoryJ 3~ 

Similarly we find for the long-time tail of the angular velocity auto- 
correlation function 

P Caa(t)~kaTl~"~ll2tlt 2 as t--+ oo (5.14) 

with coefficient/jr,.~l given by Eq. (4.14). A mode-coupling calculation by 
Lowe et al. tz~ yielded a coefficient independent of the shape of the body. 
The two results agree only for a circular disk. We have suggested that the 
mode-coupling calculation should be revised. ~z~ The coefficient /z r'lt~ is 
independent of the orientation of the body. Hence an additional configura- 
tional averaging has no effect. 

6. D U M B B E L L  A N D  ELLIPSE 

We again take a strictly two-dimensional point of view. For a circular 
disk the tensors ~trd(o) and lad"(0) vanish identically. In order to get an 
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estimate of the importance of the second term in brackets in Eq. (4.14) for 
a shape different from a circle, we consider in particular a dumbbell with 
neglect of hydrodynamic interactions, and an ellipse. 

For a dumbbell with points of friction R~ and R2 in the xy plane one 
finds the two tensors ~9' 

rd I 

(6.1) 
ldr  ~t~, 

where u is the unit vector along the bond from R 2 to R~. Hence the scalar 
product is 

/t"a(0) :/2d"(0) = - 1 / 2  (6.2) 

Next we consider an ellipse with semiaxes a and b. We choose a coor- 
dinate system with axes x, y along the axes of the ellipse. A solution of the 
steady-state flow problem for a rotating elliptic cylinder in terms of elliptic 
cylinder coordinates (ref. 30, p. 495) has been provided by Edwardes. ~ 
Alternatively one may use Cartesian coordinates and solve the problem in 
terms of functions of the elliptical coordinate 2(x, y) defined as the positive 
root of 

x 2 ),2 
a 2 + ~ + b 2 + ) =  1 (6.3) 

following the method demonstrated by Oseen (ref. 27, p. 136) for the 
ellipsoid. For  the components of the tensor [a"a(0) we find 

rd rd /~ ....... ( 0 )=  .. 0 ~:,.,.(o) = 

1 a 2 - b 2 ( 6 . 4 )  
rd rd - -  - b 2 It :.,..,.(0) =/ t  :.,.,.(0) - 2 a 2 + 

The tensor pd"(0) can be found from the symmetry relation 

rd dr /G_~/~(0) = (6.5) -~/~,(0) 

which follows from Lorentz' reciprocity theorem} -'9'3~ The relation can be 
verified from the explicit solution. The scalar tensor product is therefore 
given by 

1 ( a 2 - b 2 ~  2 
P'"/(O) : W/"(O) = - 5  \ ~ J  (6.6) 

For a long ellipse this result tends to that in Eq. (6.2). 
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For an ellipse with semiaxes a = 11, b = 3 one finds for the coefficient 
in square brackets in Eq. (4.14) the value 1.371. This agrees well with the 
result of computer simulation for a rectangle of length 11 and width 3 
immersed in a two-dimensional lattice Boltzmann fluidJ 2~ Lowe etal. ~'-~ 
found for the coefficient of the long-time tail of the rotational velocity 
autocorrelation function 1.31 ___ 0.01, in the same units. 

In the computer simulation the center of mass of the body was held 
fixed. For  a centrally symmetric body the elements la'"(0) and W"(0) of the 
grand mobility matrix vanish identically. Hence for such a body the predic- 
tions of the coefficient of the long-time tail according to Eqs. (4.14) and 
(5.14) are the same, whether or not the center of mass is held fixed. 

In conclusion we note that for the circular disk, or equivalently the 
circular cylinder in three dimensions, the complete admittance matrix ~J(co) 
can be calculated. By symmetry there is no coupling between translation and 
rotation, and it suffices to consider the scalar translational admittance qJ,(co) 
and the rotational admittance ~.(o9). The translational admittance for a 
circle of radius a is 

~.J,(~o) = [ --ico(m~, + mr) + (,(oJ) ] - t  (6.7) 

where mr=na2p is the added mass, and the friction coefficient ~',(o9) is 
given by ~'-5~ 

otaKl(o~a) 
~t(m) = 4~q (6.8) 

Ko(~l) 

where Ko(z) and K~(z) are modified Bessel functions) 261 The rotational 
admittance is 

9./,.(09) = [ -icoI~, + ~',.(co) ] - '  (6.9) 

is the moment of inertia, and the rotational friction coefficient is where If, 
given by 

~,.(og) = 2Zctla2 [ 1 + ~ ctaKo(~a) ] Kl(~ J (6.10) 

The fluctuation-dissipation theorem, Eq. (5.12), provides a prediction for 
the complete time dependence of the translational and rotational velocity 
autocorrelation functions. It is easy to check that the coefficients of the 
long-time tails agree with the general theorems (5.13) and (5.14). For  an 
ellipsoid of revolution the entire angular velocity correlation function has 
been calculated by Hocquart.  t37' No doubt a similar solution could be 
found for the ellipse. 
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7. DISCUSSION 

We have calculated the long-time behavior of the translational and 
rotational velocity autocorrelation function for a Brownian particle in two 
dimensions by use of the fluctuation-dissipation theorem and linearized 
hydrodynamics. Because of the wide separation of time scales of macro- 
scopic and molecular motion there seems no reason to doubt the validity 
of the procedure. The situation is different for a particle of size comparable 
to the molecular size, and for a tagged particle in a one-component fluid. 
Mode-coupling theory shows that for a particle of finite size the kinematic 
viscosity in the coefficient of the long-time tail of the translational velocity 
autocorrelation function should be replaced by the sum of diffusion coef- 
ficient and kinematic viscosity. Since in two dimensions the steady-state 
diffusion coefficient is not well defined, because of the long-time tail in the 
velocity correlation function, a self-consistent mode-coupling theory has 
been pro,p_gsed, c38~ This theory suggests that the lit long-time tail is replaced 
by lit x/ln t behavior. Although faster than 1/t decay was observed in com- 
puter simulation, 1~4'391 the possibility of verifying the 1/t ~ behavior 
seemed questionable. ~39'4~ However, recently such super long-time decay 
has been found. 141~ 

Mode-coupling theory suggests that for a small particle the coefficient 
of the long-time tail of the rotational velocity autocorrelation function will 
also depend on size. The theory as presented ~'2~ does not lead to the 
correct coefficient for a large particle, and hence cannot be trusted for a 
small one. The derivation of Hocquart and Hinch c ~s~ for a large particle in 
three dimensions is close to the mode-coupling theory. The latter should be 
revised along these lines in both two and in three dimensions. The near 
quantitative agreement of our prediction for the coefficient of the rotational 
long-time tail with computer simulation for a particle of similar shape in 
both two and three dimensions gives confidence in the applicability of the 
procedure even on a fairly small length scale. 
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